4.4 Article

Explicit and Implicit Cosimulation Methods: Stability and Convergence Analysis for Different Solver Coupling Approaches

出版社

ASME
DOI: 10.1115/1.4028503

关键词

cosimulation; solver coupling; parallelization; subcycling; explicit; implicit; coupling by constitutive laws; stability; convergence

向作者/读者索取更多资源

The numerical stability and the convergence behavior of cosimulation methods are analyzed in this manuscript. We investigate explicit and implicit coupling schemes with different approximation orders and discuss three decomposition techniques, namely, force/force-, force/displacement-, and displacement/displacement-decomposition. Here, we only consider cosimulation methods where the coupling is realized by applied forces/torques, i.e., the case that the coupling between the subsystems is described by constitutive laws. Solver coupling with algebraic constraint equations is not investigated. For the stability analysis, a test model has to be defined. Following the stability definition for numerical time integration schemes (Dahlquist's stability theory), a linear test model is used. The cosimulation test model applied here is a two-mass oscillator, which may be interpreted as two Dahlquist equations coupled by a linear spring/damper system. Discretizing the test model with a cosimulation method, recurrence equations can be derived, which describe the time discrete cosimulation solution. The stability of the recurrence equations system represents the numerical stability of the cosimulation approach and can easily be determined by an eigenvalue analysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据