4.6 Article

Preparation and characterization of mixed matrix membranes based on Matrimid/PVDF blend and MIL-101(Cr) as filler for CO2/CH4 separation

期刊

CHEMICAL ENGINEERING SCIENCE
卷 185, 期 -, 页码 92-104

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2018.04.006

关键词

Mixed matrix membranes; Matrimid; Polyvinylidene fluoride; MIL-101(Cr); CO2/CH4 separation

资金

  1. University of Isfahan, Iran

向作者/读者索取更多资源

In this work, the effect of addition of MIL-101(Cr) metal-organic framework (MOF) and poly(vinylidene fluoride) (PVDF) on physicochemical, morphological and CO2/CH4 separation properties of Matrimid was investigated. MIL-101(Cr) micron-sized particles were synthesized and dispersed as filler in Matrimid/ PVDF blended matrix so that a mixed matrix membrane (MMM) was formed. X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis were used to characterize the MIL-101(Cr) particles. The Matrimid/PVDF blend membranes were investigated by optical microscopy (OM), differential scanning calorimetry (DSC) and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectrophotometry. SEM images were employed to characterize the morphology of membranes. Single-gas permeability measurements for prepared membranes were performed and the results showed improvement in gas permeability of fabricated membranes in comparison with the neat Matrimid membrane. The best performance of blend membrane was obtained with 3 wt% of PVDF, leading to increase 29% and 23% in CO2 permeability and CO2/CH4 selectivity, respectively, as compared to the pristine Matrimid. Furthermore, the gas permeability and CO2/CH4 selectivity were improved simultaneously for Matrimid/PVDF/MIL-101 membrane. The CO2 permeability in this membrane increased 102% and 58%, and the ideal selectivity increased 77% and 45% as compared to the neat Matrimid and Matrimid/PVDF(97/3) membranes, respectively. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据