4.6 Article

Prediction of degree of impregnation in thermoplastic unidirectional carbon fiber prepreg by multi-scale computational fluid dynamics

期刊

CHEMICAL ENGINEERING SCIENCE
卷 185, 期 -, 页码 64-75

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2018.04.010

关键词

Unidirectional carbon fiber prepreg (UD-CFP); Thermoplastic resin; Resin impregnation die; Degree of impregnation (Dol); Computational fluid dynamics (CFD); Multi-scale simulation

资金

  1. Basic Science Research Program through National Research Foundation of Korea (NRF)
  2. Ministry of Science ICT and Future Planning in South Korea [NRF-2016R1A2B4010423]

向作者/读者索取更多资源

A multi-scale simulation approach was proposed to predict the degree of impregnation (Dol) in thermoplastic unidirectional carbon fiber prepreg (UD-CFP). The multi-scale approach included a two-dimensional (2D) micro-scale computational fluid dynamics (CFD) in a representative elementary volume (REV) of carbon fiber (CF) tow, a 3D macro-scale CFD of an entire impregnation die with 15 sliding CF tows, and a process-scale simulation assembling data from the micro- and macro-scale CFDs. In the macro-scale steady-state CFD, thermoplastic resin injection and CF tow insertion were considered for an impregnation die 10 cm in width. In the micro-scale transient CFD, impregnation mechanisms of resin into CF filaments 7 mu m in diameter were identified in terms of surface coverage, capillary permeation, and penetration through CF filaments. The Dol as a function of pressure and time was obtained from the micro-scale CFD within a range of pressures found in the macro-scale CFD. In the process-scale simulation, the cumulative Dol of the 15 tows was predicted along the impregnation die length with the aid of the micro- and macro-scale CFD results. Combining the multi-scale models gives a potential to predict the uniformity of the transverse resin amount in the final UD-CFP product. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据