4.6 Article

Modelling of hydrodynamic cavitation with orifice: Influence of different orifice designs

期刊

CHEMICAL ENGINEERING RESEARCH & DESIGN
卷 136, 期 -, 页码 698-711

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cherd.2018.06.014

关键词

Hydrodynamic cavitation; Orifice; CFD; Multiphase; Turbulent; Design

向作者/读者索取更多资源

Hydrodynamic cavitation (HC) may be harnessed to intensify a range of industrial processes, and orifice devices are one of the most widely used for HC. Despite the wide spread use, the influence of various design and operating parameters on generated cavitation is not yet adequately understood. This paper presents results of computational investigation into cavitation in different orifice designs over a range of operating conditions. Key geometric parameters like orifice thickness, hole inlet sharpness and wall angle on the cavitation behaviour is discussed quantitatively. Formulation and numerical solution of multiphase computational fluid dynamics (CFD) models are presented. The simulated results in terms of velocity and pressure gradients, vapour volume fractions and turbulence quantities etc. are critically analysed and discussed. Orifice thickness was found to significantly influence cavitation behaviour, with the pressure ratio required to initiate cavitation found to vary by a factor of 10 for orifice thickness to diameter (I/d) ratios in the range of 0-5. Inlet radius similarly has a pronounced effect on cavitational activity. The results offer useful guidance to the designer of HC devices, identifying key parameters that can be manipulated to achieve the desired level of cavitational activity at optimised hydrodynamic efficiencies. The models can be used to simulate detailed time-pressure histories for individual vapour cavities, including turbulent fluctuations. This in turn can be used to simulate cavity collapse and overall performance of HC device. The presented approach and results offer a useful means to compare and evaluate different cavitation device designs and operating parameters. (C) 2018 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据