4.7 Article

Magnetic field enhanced denitrification in nitrate and ammonia contaminated water under 3D/2D Mn2O3/g-C3N4 photocatalysis

期刊

CHEMICAL ENGINEERING JOURNAL
卷 349, 期 -, 页码 530-538

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2018.05.124

关键词

Magnetic field; Mn2O3/g-C3N4 photocatalyst; Nitrate reduction; Ammonia oxidation; Visible light irradiation

资金

  1. National Science and Technology Major Project of Twelfth Five Years [2014ZX07201-012-2, 2013ZX07201007-002]
  2. China Scholarship Council [201706120273, 201706120265]

向作者/读者索取更多资源

It is difficult to achieve concurrent removal of nitrate (NO3- -N) and ammonia (NH4+ -N) from water thoroughly by photocatalysis due to their opposite charges and inappropriate potentials of photo-induced carriers. Herein, an innovative magnetic field enhanced 3D/2D Mn2O3/g-C3N4 photocatalytic system was developed for denitrification from NO3- -N and NH4+ -N contaminated water under visible light. High removal efficiency of 94.5% and 97.4% for NO3- -N and NH4+ -N were achieved after imposing magnetic field. Impressively, the extra magnetic field integrated the advantages of providing driving force for NO3- -N and NH4+ -N approaching catalyst surface as well as facilitating separation of photo-induced charge carriers in newly-formed II type heterojunction by generating Lorentz force. Interestingly, the electrons on conduction band of g-C3N4 could reduce NO3- -N to NO2 -N, N-2 and NH4+ -N. Subsequently, the produced NO2- -N could be reduced to N-2 and NH4+-N. Meanwhile, the holes on valence band of Mn2O3 could convert NH4+ -N to N-2 selectively, which made the dominate contribution to high N-2 recovery (93.2%) during photocatalysis. Moreover, the reusable Mn2O3/gC(3)N(4) achieved efficient denitrification under magnetic assisted photocatalysis in real water backgrounds such as tap water and river water. This study provided an efficient and promising strategy for nitrogen remediation from water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据