4.7 Article

Investigation of a two-dimensional model on microbial fuel cell with different biofilm porosities and external resistances

期刊

CHEMICAL ENGINEERING JOURNAL
卷 333, 期 -, 页码 572-582

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2017.09.189

关键词

Microbial fuel cell; Mathematical model; Mass transfer; Microorganism distribution

资金

  1. National Natural Science Foundation of China for Distinguished Young Scientists [51425603]
  2. Science and Technology Planning Project of Guangdong Province, China [2017A020216019]
  3. Natural Science Basic Research Plan in Shaanxi Province of China [2017JM5004]
  4. China Scholarship Council [201706280278]

向作者/读者索取更多资源

To discuss the internal mass distribution in microbial fuel cell (MFC), a transient, two-dimensional model for single-chamber, air cathode MFC was developed in this work. This model was established by finite element method considering two kinds of microorganisms' growth, internal mass transfer and bio-electrochemical kinetics. The heterogeneous chemical components distribution in the anode chamber, the growth and spatial distribution of exoelectrogens and methanogens were discussed. The effect of biofilm porosity and external resistance on the electron transfer from redox mediator to the anode, microorganism growth and electricity generation performance in MFC was investigated. Simulation results revealed that the exoelectrogens and methanogens concentrations distributed heterogeneously with different biofilm porosities. Higher biofilm porosity was beneficial to final electron transfer step and had different impact on electricity generation at start-up and steady stage, respectively. Lower external resistances contributed to enhancing MFC performance. Our model should be helpful for the optimization of the design and operation conditions in MFCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据