4.6 Article

Relationships Between Neuronal Oscillatory Amplitude and Dynamic Functional Connectivity

期刊

CEREBRAL CORTEX
卷 29, 期 6, 页码 2668-2681

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhy136

关键词

amplitude envelopes; coupled neural masses; dynamic functional connectivity; magnetoencephalography; neural mass bifurcation; neuronal oscillations; time-frequency spectrograms

向作者/读者索取更多资源

Event-related fluctuations of neural oscillatory amplitude are reported widely in the context of cognitive processing and are typically interpreted as a marker of brain activity. However, the precise nature of these effects remains unclear; in particular, whether such fluctuations reflect local dynamics, integration between regions, or both, is unknown. Here, using magnetoencephalography, we show that movement induced oscillatory modulation is associated with transient connectivity between sensorimotor regions. Further, in resting-state data, we demonstrate a significant association between oscillatory modulation and dynamic connectivity. A confound with such empirical measurements is that increased amplitude necessarily means increased signal-to-noise ratio (SNR): this means that the question of whether amplitude and connectivity are genuinely coupled, or whether increased connectivity is observed purely due to increased SNR is unanswered. Here, we counter this problem by analogy with computational models which show that, in the presence of global network coupling and local multistability, the link between oscillatory modulation and long-range connectivity is a natural consequence of neural networks. Our results provide evidence for the notion that connectivity is mediated by neural oscillations, and suggest that time-frequency spectrograms are not merely a description of local synchrony but also reflect fluctuations in long-range connectivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据