4.6 Article

Synaptic Mechanisms for Bandwidth Tuning in Awake Mouse Primary Auditory Cortex

期刊

CEREBRAL CORTEX
卷 29, 期 7, 页码 2998-3009

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhy165

关键词

excitatory and inhibitory synaptic mechanism; inhibitory cortical neurons; primary auditory cortex; size tuning

资金

  1. US National Institutes of Health [NIH R01DC008983, NIH R01EY019049]
  2. National Basic Research Program of China (973 Program) [2014CB943002]
  3. National Science Foundation of China [31529003, 31671083]
  4. National Natural Science Foundation of China [31671084]
  5. Science and Technology Planning Project of Guangzhou [201804010443]

向作者/读者索取更多资源

Spatial size tuning in the visual cortex has been considered as an important neuronal functional property for sensory perception. However, an analogous mechanism in the auditory system has remained controversial. In the present study, cell-attached recordings in the primary auditory cortex (A1) of awake mice revealed that excitatory neurons can be categorized into three types according to their bandwidth tuning profiles in response to band-passed noise (BPN) stimuli: nonmonotonic (NM), flat, and monotonic, with the latter two considered as non-tuned for bandwidth. The prevalence of bandwidth-tuned (i.e., NM) neurons increases significantly from layer 4 to layer 2/3. With sequential cell-attached and whole-cell voltage-clamp recordings from the same neurons, we found that the bandwidth preference of excitatory neurons is largely determined by the excitatory synaptic input they receive, and that the bandwidth selectivity is further enhanced by flatly tuned inhibition observed in all cells. The latter can be attributed at least partially to the flat tuning of parvalbumin inhibitory neurons. The tuning of auditory cortical neurons for bandwidth of BPN may contribute to the processing of complex sounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据