4.7 Article

Nanostructured co-precipitated Ce0.9Ln0.1O2 (Ln = La, Pr, Sm, Nd, Gd, Tb, Dy, or Er) for thermochemical conversion of CO2

期刊

CERAMICS INTERNATIONAL
卷 44, 期 14, 页码 16688-16697

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2018.06.096

关键词

Ce(0.9)Ln(0.1)O(2); CO2 splitting; Lanthanides; Co-precipitation; Ceria; Thermochemical cycles

资金

  1. NPRP grant from the Qatar National Research Fund (a member of Qatar Foundation) [NPRP8-370-2-154]

向作者/读者索取更多资源

The influence of lanthanide metal cations doped into the CeO2 crystal structure (to form Ce(0.9)Ln(0.1)O(2); Ln = La, Pr, Nd, Sm, Gd, Tb, Dy, or Er) on thermochemical reduction and the CO2 splitting ability of Ce(0.9)Ln(0.1)O(2) is scrutinized using thermogravimetric analysis. Ce(0.9)Ln(0.1)O(2) redox materials are effectively synthesized by co-precipitation of hydroxides. As-synthesized Ce(0.9)Ln(0.1)O(2) redox materials are further characterized based on their phase composition, crystallite size, surface area, and morphology using powder X-ray diffraction, Brunauer-Emmett-Teller surface area analysis, and scanning electron microscopy. The thermal reduction and CO2 splitting aptitude of Ce(0.9)Ln(0.1)O(2) redox materials are examined by performing 10 consecutive thermochemical cycles. The results imply that insertion of Sm3+, Er3+, Tb3+, Dy3+, and La3+ in place of Ce4+ in the fluorite crystal structure of CeO2 (forming Ce(0.9)Ln(0.1)O(2)) enhances the O-2 liberation by 22.5, 14.6, 12.6, 5.85, and 2.96 mu mol O-2/g.cycle, respectively. Besides, CeLa is observed to be more active towards the CO2 splitting reaction than CeO2 and the other Ce(0.9)Ln(0.1)O(2) redox materials investigated in this study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据