4.7 Article

Cathode-Ray Tube panel glass replaces frit in transparent glazes for ceramic tiles

期刊

CERAMICS INTERNATIONAL
卷 44, 期 12, 页码 13790-13796

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2018.04.222

关键词

CRT; Glaze; Frit; Glass recycling; Ceramic tiles

资金

  1. Brazilian research funding agency CAPES
  2. Brazilian research funding agency FAPESP [2013/07793-6]

向作者/读者索取更多资源

The disposal of Cathode Ray Tubes (CRT) from end-of-life personal computers and TV screens represents a serious problem in electronic-waste management. As an assembly of different materials, finding a use for each of a monitor's parts is a critical step forward a solution. However, the CRT panel is a silicate glass with a relatively high proportion of alkaline and alkaline-earth oxides, for which recycling is a natural task, and the replacement of frit in ceramic glazes arises as an interesting alternative. In this context, we investigated the effect of CRT panel glass in glazes for ceramic tiles based on a comparative analysis. We replaced up to 40 wt% of commercial transparent frit with CRT panel glass in the formulation of one reference slurry. Chemical analyses were conducted by X-ray fluorescence (XRF) and inductively coupled plasma optical emission (ICP-OES) spectrometry. The thermal expansion coefficient and the glass transition and dilatometric softening temperatures were characterized by dilatometry and compared to such properties calculated as a function of composition, using the SciGlass software and database. 20- and 30-min firing cycles were applied in a fast-firing roller kiln, replicating industrial conditions. The samples transparency was measured by spectrophotometry and compared to the colorimetric parameters of a standard glaze. The maximum content of panel glass possible to add in the transparent glaze formulation without affecting the expected properties was 20 wt%, above which transparency decreased due to heterogeneities. The reformulation of a ceramic glaze with waste CRT panel glass was successful, thus suggesting an interesting approach for disposal of other electronic wastes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据