3.8 Proceedings Paper

A Signal Processing Approach for Cyber Data Classification with Deep Neural Networks

期刊

COMPLEX ADAPTIVE SYSTEMS, 2015
卷 61, 期 -, 页码 349-354

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.procs.2015.09.156

关键词

Neural networks; Classification; Cyber security; Signal processing; Deep learning

向作者/读者索取更多资源

Recent cyber security events have demonstrated the need for algorithms that adapt to the rapidly evolving threat landscape of complex network systems. In particular, human analysts often fail to identify data exfiltration when it is encrypted or disguised as innocuous data. Signature-based approaches for identifying data types are easily fooled and analysts can only investigate a small fraction of network events. However, neural networks can learn to identify subtle patterns in a suitably chosen input space. To this end, we have developed a signal processing approach for classifying data files which readily adapts to new data formats. We evaluate the performance for three input spaces consisting of the power spectral density, byte probability distribution and sliding-window entropy of the byte sequence in a file. By combining all three, we trained a deep neural network to discriminate amongst nine common data types found on the Internet with 97.4% accuracy. (C) 2015 The Authors. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据