4.2 Article

Palmitate Activates CCL4 Expression in Human Monocytic Cells via TLR4/MyD88 Dependent Activation of NF-κB/MAPK/PI3K Signaling Systems

期刊

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
卷 46, 期 3, 页码 953-964

出版社

KARGER
DOI: 10.1159/000488824

关键词

Palmitate; CCL4/MIP-1beta; TLR4

资金

  1. Kuwait Foundation for the Advancement of Sciences (KFAS) [RC14016001 (RA-AM-2017-007)]

向作者/读者索取更多资源

Background/Aims: Obesity is associated with adipose tissue inflammation which plays a key role in the development of insulin resistance and type 2 diabetes (T2D). Saturated free fatty acids (SFAs) levels are found to be elevated in obesity and T2D. Chemokines are known to have potent inflammatory functions in a wide range of biological processes linked to immunological disorders. Since CCL4 (Chemokine (C-C motif) ligand 4), also known as macrophage inflammatory protein-1 beta (MIP-1 beta), plays an important role in the migration of monocytes into the adipose tissue, we investigated the expression of CCL4 in monocytic cells/macrophages following activation with free fatty acid palmitate. Methods: Human monocytic cell line THP-1 and macrophages derived from THP-1 and primary monocytes were stimulated with palmitate and LPS (positive control). CCL4 expression and secretion were measured with real time RT-PCR and ELISA respectively. Signaling pathways were identified by using THP-1-XBlue (TM) cells, THP-1-XBlue (TM)-defMyD cells, anti-TLR4 mAb and TLR4 siRNA. Results: Palmitate induces CCL4 expression at both mRNA and protein levels in human monocytic cells. Palmitate-induced CCL4 production was markedly suppressed by neutralizing anti-TLR-4 antibody. Additionally, silencing of TLR4 by siRNA also significantly suppressed the palmitate-induced up-regulation of CCL4. MyD88-deficient cells did not express CCL4 in response to palmitate treatment. Inhibition of NF-kappa B and MAPK pathways suppressed the palmitate mediated induction of CCL4. Moreover, induction of CCL4 was blocked by PI3 Kinase inhibitors LY294002 and wortmannin. Conclusion: Collectively, our results show that palmitate induces CCL4 expression via activation of the TLR4-MyD88/NF-kappa B/MAPK/PI3K signaling cascade. Thus, our findings suggest that the palmitate-induced CCL4 production might be an underlying mechanism of metabolic inflammation. (C) 2018 The Author(s) Published by S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据