4.4 Article

PIV measurements in a turbulent wall jet over a backward-facing step in a three-dimensional, non-confined channel

期刊

FLOW MEASUREMENT AND INSTRUMENTATION
卷 42, 期 -, 页码 26-39

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.flowmeasinst.2015.01.002

关键词

Wall jet; Backward-facing step; PIV; RANS

资金

  1. MEDEE project
  2. French National Company of Electricity (EDF)
  3. Region Nord Pas-de-Calais
  4. European project FEDER

向作者/读者索取更多资源

A study of a turbulent wall jet over a backward-facing step is especially of interest because it shows a rich phenomenon flow and a mechanism to alter the flow characteristics downstream of the step. However, studies on this flow configuration are rare. In this paper, we considered this flow configuration in a non-confined channel as the specific engineering applications of electrical rotating machines and alternator that can be found in modern wind generators of the power production industry and automobile engines. The turbulent wall jet over a backward-facing step in a non-confined wind tunnel had the jet Reynolds number of 24,100 and the step Reynolds number of 11,900. Particle image velocity (PIV) and stereoscopic PIV measurements were performed along the central plane and several cross-stream planes. Numerical simulation of the test configuration was conducted by solving the three-dimensional Reynolds Averaged Navier Stokes (RANS) equations with the second-order closure Reynolds stress model (RSM). The mean flow fields and second-order statistical moments from the RSM simulation were compared to results that were obtained through the PIV and stereo-PN experiments. The mean reattachment length obtained from the current configuration was much shorter than those from the backward-facing step in the plane channel. The stereo-PIV measurements in the cross-stream planes revealed a high three-dimensionality of the flow, a high population of streamwise vortice in the upper region, near the side walls and the corners formed by the side walls and the bottom wall. The obtained results also confirmed the presence of the wall-jet formation on the bottom wall. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据