4.7 Article

Intermetallides as the catalysts for carbon dioxide reforming of methane

期刊

CATALYSIS TODAY
卷 299, 期 -, 页码 303-316

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cattod.2017.09.021

关键词

Dry reforming of methane; Intermetallic; Self-propagating high-temperature synthesis; Ion implantation; Platinum; Ruthenium

资金

  1. Department of Structural Macrokinetics of Tomsk Scientific Center (Siberian Branch of the Russian Academy of Sciences)

向作者/读者索取更多资源

Intermetallic catalysts for dry reforming of methane (DRM) based on Ni3Al with low content of Pt and Ru have been developed. Self-propagating high-temperature synthesis (SHS) was used as a method of catalyst synthesis. Ion implantation was used to change the physical, chemical and catalytic properties of Ni3Al as a matrix for this new type of catalysts for DRM. Ions of Pt and Ru were accelerated in an electrical field and impacted into a solid Ni3Al. The catalytic performances were evaluated between 600 degrees C and 900 degrees C at atmospheric pressure. The feed was CH4/CO2/He = 20/20/60 vol.% mixture. Particle size and chemical evolution of catalysts were studied by XRD (in situ and ex situ), SEM, EDS, HRTEM + EDS and XPS. The active components were shown to be primarily dispersed in the nearsurface layer of Ni3Al support as nanoparticles of size 5-10 nm, which were distributed homogeneously or heterogeneously, depending on the catalyst composition. Spinel structure of some catalysts is resistant to carbonization and provides high catalyst stability in DRM. Modification of catalyst by ion implantation had several positive impacts: 1) high catalytic activity and stability in DRM, 2) reducing of carbon deposits, 3) Pt and Ru prevent Ni phase sintering by avoiding particle coalescence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据