3.8 Proceedings Paper

Scaling up Gaussian Belief Space Planning Through Covariance-Free Trajectory Optimization and Automatic Differentiation

期刊

ALGORITHMIC FOUNDATIONS OF ROBOTICS XI
卷 107, 期 -, 页码 515-533

出版社

SPRINGER-VERLAG BERLIN
DOI: 10.1007/978-3-319-16595-0_30

关键词

-

向作者/读者索取更多资源

Belief space planning provides a principled framework to compute motion plans that explicitly gather information from sensing, as necessary, to reduce uncertainty about the robot and the environment. We consider the problem of planning in Gaussian belief spaces, which are parameterized in terms of mean states and covariances describing the uncertainty. In this work, we show that it is possible to compute locally optimal plans without including the covariance in direct trajectory optimization formulations of the problem. As a result, the dimensionality of the problem scales linearly in the state dimension instead of quadratically, as would be the case if we were to include the covariance in the optimization. We accomplish this by taking advantage of recent advances in numerical optimal control that include automatic differentiation and state of the art convex solvers. We show that the running time of each optimization step of the covariance-free trajectory optimization is O(n(3)T), where n is the dimension of the state space and T is the number of time steps in the trajectory. We present experiments in simulation on a variety of planning problems under uncertainty including manipulator planning, estimating unknown model parameters for dynamical systems, and active simultaneous localization and mapping (active SLAM). Our experiments suggest that our method can solve planning problems in 100 dimensional state spaces and obtain computational speedups of 400x over related trajectory optimization methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据