4.8 Article

Mesoscopic friction and network morphology control the mechanics and processing of carbon nanotube yarns

期刊

CARBON
卷 139, 期 -, 页码 94-104

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2018.06.043

关键词

-

资金

  1. NASA's Space Technology Research [NNX16AE03G]
  2. Institute for Ultra-Strong Composites by Computational Design [NNX17AJ32G]
  3. NASA High End Computing Program through the NASA Advanced Supercomputing Division at Ames Research Center
  4. Itasca Consulting Group
  5. Faculty Research (MNSU) grant

向作者/读者索取更多资源

Carbon nanotube (CNT) yarns are synthetic nanomaterials of interest for diverse applications. To bring fundamental understanding into the yarn formation process, we perform mesoscopic scale distinct element method (mDEM) simulations for the stretching of CNT networks. The parameters used by mDEM, including the mesoscale friction, are based on full atomistic results. By bridging across the atomistic and mesoscopic length scales, our model predicts accurately the mechanical response of the network over a large deformation range. At small and moderate deformations, the microstructural evolution is dominated by zipping relaxations directed along the applied strain direction. At larger deformations, the occurrence of energetic elasticity promotes yarn densification, by lowering CNT waviness and eliminating squashed pores. Next, by varying the mesoscopic dissipation as well as the network structure, we reveal that the mesoscale friction and film morphology are key factors for the yarn formation: While lack of friction compromises the strain-induced alignment process, phononic and polymeric friction promote CNT alignment by enabling load transfer and directed zipping relaxations, especially in networks containing long and entangled CNTs. Yarns drawn from cellular networks are shown instead to maintain high porosity, even with enhanced polymeric friction. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据