4.8 Article

Controlling hydrogen environment and cooling during CVD graphene growth on nickel for improved corrosion resistance

期刊

CARBON
卷 127, 期 -, 页码 131-140

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2017.10.079

关键词

-

资金

  1. Department of Mechanical and Aerospace engineering, Monash University
  2. MIGR
  3. MCATM

向作者/读者索取更多资源

Lack of uniformity and generation of defects including grain boundaries and wrinkles in graphene coatings synthesized using chemical vapour deposition (CVD) adversely affect the durability of these coatings. In order to control the defect density and to improve the durability of corrosion resistance of the resultant graphene coating, a fundamental understanding of the influence of the CVD parameters on the defect density is of utmost importance. In this study, the influences of hydrogen flow during graphene growth and the cooling rate on the defect density and barrier properties of a graphene coating have been investigated. A thorough microscopic and spectroscopic investigation revealed that (i) slow cooling hindered the formation of graphene coating irrespective of the presence or absence of hydrogen flow, and (ii) under rapid cooling condition, absence of hydrogen flow restricted wrinkle formation on the resultant coating. Diminished wrinkle formation in absence of hydrogen flow significantly improved the durability of the resultant coating. Based on an in-depth electrochemical impedance spectroscopic investigation, a mechanism has been proposed, which was further corroborated with the post-corrosion analyses using X-ray photoelectron spectroscopy and scanning electron microscopy. This study provides a new direction to achieve graphene coatings with minimal defect density and excellent barrier properties. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据