4.8 Article

Hydrogenated defective graphene as an anode material for sodium and calcium ion batteries: A density functional theory study

期刊

CARBON
卷 136, 期 -, 页码 73-84

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2018.04.034

关键词

-

资金

  1. Australian Research Council through the LIEF program [LE160100051]
  2. Australian Government through an Australian Government Research Training Program Scholarship (RTP)

向作者/读者索取更多资源

Recent experimental studies indicated that hydrogenation improves the performance of graphitic materials used as anodes in lithium and sodium ion rechargeable batteries. Here, results of density functional theory calculations are presented to demonstrate that this is also effective for both sodium and calcium ion batteries. It is shown that this can be explained by the increase in binding strength of the metal adatom to the hydrogenated graphene, compared to its binding to graphene, and also an increase in the inter-layer spacing of the layered materials. According to our calculations, whereas Na and Ca bind weakly to the graphene sheet with binding energies of -0.763 and -0.817 eV, they bind more strongly to the single layer of the proposed hydrogenated graphene sheet (C68H4) with binding energies of -1.670 and -2.756 eV, respectively. Furthermore, although Na does not intercalate strongly in the layers of the C68H4 material, up to 16 Ca can intercalate into the bulk layers of this material giving an electrical capacity of 591.2 mA h/g and a 29.3% expansion of the inter-layer distance. Thus, hydrogenated defective graphene provides an anode material that might enhance the performance of rechargeable batteries compared to graphene, using metals that are cheaper than lithium. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据