4.8 Article

Small-Area, Resistive Volatile Organic Compound (VOC) Sensors Using Metal-Polymer Hybrid Film Based on Oxidative Chemical Vapor Deposition (oCVD)

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 7, 期 30, 页码 16213-16222

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b05392

关键词

printed circuit board; gold nanoparticle; sensor; oCVD; conducting polymer

资金

  1. Royal Dutch Shell plc.
  2. TUBITAK Turkey

向作者/读者索取更多资源

We report a novel room temperature methanol sensor comprised of gold nanopartides covalently attached to the surface of conducting copolymer films. The copolymer films are synthesized by oxidative chemical vapor deposition (oCVD), allowing substrate-independent deposition, good polymer conductivity and stability. Two different oCVD copolymers are examined: poly(3,4-ethylenedioxythiophene-co-thiophene-3-aceticacid) [poly-(EDOT-co-TAA)] and poly(3,4-ehylenedioxythiophene-co-thiophene-3-ethanol) [poly-(EDOT-co-3-TE)]. Covalent attachment of gold nanoparticles to the functional groups of the oCVD films results in a hybrid system with efficient sensing response to methanol. The response of the poly(EDOT-co-TAA)/Au devices is found to be superior to that of the other copolymer, confirming the importance of the linker molecules (4-aminothiophenol) in the sensing behavior. Selectivity of the sensor to methanol over n-pentane, acetone, and toluene is demonstrated. Direct fabrication on a printed circuit board (PCB) is achieved, resulting in an improved electrical contact of the organic resistor to the metal circuitry and thus enhanced sensing properties. The simplicity and low fabrication cost of the resistive element, mild working temperature, together with its compatibility with PCB substrates pave the way for its straightforward integration into electronic devices, such as wireless sensor networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据