3.8 Proceedings Paper

Finite Element Simulation and Validation of Chip Formation and Cutting Forces in Dry and Cryogenic Cutting of Ti-6Al-4V

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.promfg.2015.09.037

关键词

Cryogenic machining; Titanium machining; Finite element modeling; Cutting forces; Chip formation

向作者/读者索取更多资源

Ti-6Al-4V titanium alloy is a popular material in industrial applications (e.g. aerospace, oil & gas, medical) due to its superior mechanical properties, although its low thermal conductivity and high chemical reactivity with other materials make it a hard-to-cut material. A finite element model (FEM) was developed in the present investigation to simulate dry and cryogenic orthogonal cutting of Ti-6Al-4V by using TiAlN coated carbide inserts. Numerical prediction of the effect of the superior cryogenic cooling on chip formation, cutting and thrust forces were investigated. The simulations were validated by the comparison with experimental results. The model calibration was performed with experimental data on dry cutting and then the model was used for predicting the cryogenic cooling case. The validated FEM models were used to compare the chip formation in dry cutting and cryogenic cutting in order to point out some differences in terms of chip segmentation frequency and chip thickness and gain additional knowledge.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据