3.8 Proceedings Paper

Using Hardware Features for Increased Debugging Transparency

出版社

IEEE
DOI: 10.1109/SP.2015.11

关键词

malware debugging; transparency; SMM

向作者/读者索取更多资源

With the rapid proliferation of malware attacks on the Internet, understanding these malicious behaviors plays a critical role in crafting effective defense. Advanced malware analysis relies on virtualization or emulation technology to run samples in a confined environment, and to analyze malicious activities by instrumenting code execution. However, virtual machines and emulators inevitably create artifacts in the execution environment, making these approaches vulnerable to detection or subversion. In this paper, we present MALT, a debugging framework that employs System Management Mode, a CPU mode in the x86 architecture, to transparently study armored malware. MALT does not depend on virtualization or emulation and thus is immune to threats targeting such environments. Our approach reduces the attack surface at the software level, and advances state-of-the-art debugging transparency. MALT embodies various debugging functions, including register/memory accesses, breakpoints, and four stepping modes. We implemented a prototype of MALT on two physical machines, and we conducted experiments by testing an array of existing anti-virtualization, anti-emulation, and packing techniques against MALT. The experimental results show that our prototype remains transparent and undetected against the samples. Furthermore, our prototype of MALT introduces moderate but manageable overheads on both Windows and Linux platforms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据