3.8 Proceedings Paper

Direct Intrinsics: Learning Albedo-Shading Decomposition by Convolutional Regression

出版社

IEEE
DOI: 10.1109/ICCV.2015.342

关键词

-

向作者/读者索取更多资源

We introduce a new approach to intrinsic image decomposition, the task of decomposing a single image into albedo and shading components. Our strategy, which we term direct intrinsics, is to learn a convolutional neural network (CNN) that directly predicts output albedo and shading channels from an input RGB image patch. Direct intrinsics is a departure from classical techniques for intrinsic image decomposition, which typically rely on physically-motivated priors and graph-based inference algorithms. The large-scale synthetic ground-truth of the MPI Sintel dataset plays a key role in training direct intrinsics. We demonstrate results on both the synthetic images of Sintel and the real images of the classic MIT intrinsic image dataset. On Sintel, direct intrinsics, using only RGB input, outperforms all prior work, including methods that rely on RGB+Depth input. Direct intrinsics also generalizes across modalities; it produces quite reasonable decompositions on the real images of the MIT dataset. Our results indicate that the marriage of CNNs with synthetic training data may be a powerful new technique for tackling classic problems in computer vision.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据