4.4 Review

A perspective on a rapid and radiation-free tracer imaging modality, magnetic particle imaging, with promise for clinical translation

期刊

BRITISH JOURNAL OF RADIOLOGY
卷 91, 期 1091, 页码 -

出版社

BRITISH INST RADIOLOGY
DOI: 10.1259/bjr.20180326

关键词

-

资金

  1. NIH [R01 EB019458, EB024578]
  2. UC TRDRP Grant [26IP-0049]
  3. M. Cook Chair
  4. UC Discovery Award
  5. Siebel Scholars Foundation
  6. Agency of Science Technology and Research, Singapore

向作者/读者索取更多资源

Magnetic particle imaging (MPI), introduced at the beginning of the twenty-first century, is emerging as a promising diagnostic tool in addition to the current repertoire of medical imaging modalities. Using superparamagnetic iron oxide nanoparticles(SPIOs), that are available for clinical use, MPI produces high contrast and highly sensitive tomographic images with absolute quantitation, no tissue attenuation at-depth, and there are no view limitations. The MPI signal is governed by the Brownian and Neel relaxation behavior of the particles. The relaxation time constants of these particles can be utilized to map information relating to the local microenvironment, such as viscosity and temperature. Proof-ofconcept pre-clinical studies have shown favourable applications of MPI for better understanding the pathophysiology associated with vascular defects, tracking cell-based therapies and nanotheranostics. Functional imaging techniques using MPI will be useful for studying the pathology related to viscosity changes such as in vascular plaques and in determining cell viability of superparamagnetic iron oxide nanoparticle labeled cells. In this review article, an overview of MPI is provided with discussions mainly focusing on MPI tracers, applications of translational capabilities ranging from diagnostics to theranostics and finally outline a promising path towards clinical translation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据