4.5 Article

Cortical morphometric changes after spinal cord injury

期刊

BRAIN RESEARCH BULLETIN
卷 137, 期 -, 页码 107-119

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.brainresbull.2017.11.013

关键词

Spinal cord injury; Voxel-based morphometry; Gray matter volume; Motor cortex; Sensory cortex; Neuropathic pain

向作者/读者索取更多资源

Neuroimaging studies suggest that spinal cord injury (SCI) may lead to significant anatomical alterations in the human sensorimotor system. In particular, voxel-based morphometry (VBM) of cortical volume has revealed a significant gray and white matter atrophy bilaterally in the primary sensory cortex (S1). By contrast, some structural studies failed to detect changes in gray matter volume (GMV) in the primary motor cortex (Ml) following SCI, whereas others have reported a substantial decrease of GMV also in Ml. In addition to direct degeneration of the sensorimotor cortex, SCI can also lead to atrophy of the non-sensorimotor cortex, such as anterior cingulate cortex, insular cortex, middle frontal gyrus and supplementary motor area. These findings suggest that SCI can cause remote atrophy of brain gray matter in the salient network. Furthermore, pain-related remodelling may occur in SQ. In fact, structural changes in SCI are also related to the presence and degree of below-level pain. We performed a systematic review of the neuroimaging studies showing morphometric cortical changes and subsequent functional reorganization in humans with SCI. Literature search was conducted using PubMed and Embase. We identified 12 articles matching the inclusion criteria and 195 patients were included in these studies. The wide range of disease duration, rehabilitation training, drug intervention, and different research methodology, especially the identification of region of interest and the statistical approach to correct for multiple comparisons, may have contributed to some inconsistencies between the reviewed studies. Nevertheless, neuroimaging biomarkers can assess the extent of neural damage, elucidate the mechanisms of neural repair, and predict clinical outcome. A better understanding of the structural and functional changes that occur at cortical level following SCI may be useful in tracking potential treatment induced changes and identifying potential therapeutic targets, thus developing evidence-based rehabilitation therapies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据