4.6 Article

Benchmarking density functionals for hydrogen-helium mixtures with quantum Monte Carlo: Energetics, pressures, and forces

期刊

PHYSICAL REVIEW B
卷 93, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.93.035121

关键词

-

资金

  1. U.S. Department of Energy at the Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
  2. Predictive Theory and Modeling for Materials and Chemical Science program by the Basic Energy Science (BES), DOE
  3. DOE [DE-NA0001789]
  4. Fondation Nanosiences de Grenoble
  5. PRACE Project [2011050781]

向作者/读者索取更多资源

An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extra solar planets. Though density-functional-theory-based first-principles methods have the potential to provide the accuracy and computational efficiency required for this task, recent bench marking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quantification of the errors introduced. In this work, we present a quantum Monte Carlo (QMC) -based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures at thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC-based force estimators and use them to gain insight into how well the local liquid structure is captured by different density functionals. We find that TPSS, BLYP, and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative differences exhibited by the major classes of functionals, and we estimate the magnitudes of these effects when possible.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据