4.6 Article

Bone marrow mechanotransduction in porcine explants alters kinase activation and enhances trabecular bone formation in the absence of osteocyte signaling

期刊

BONE
卷 107, 期 -, 页码 78-87

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.bone.2017.11.007

关键词

Mechanobiology; Bone marrow; Bone adaptation; Trabecular bone; Osteocytes; Dynamic histomorphometry

资金

  1. National Science Foundation [CMMI-1453467, CMMI-1100207]
  2. Div Of Civil, Mechanical, & Manufact Inn [1435467] Funding Source: National Science Foundation

向作者/读者索取更多资源

Bone is a dynamic tissue that can adapt its architecture in response to mechanical signals under the control of osteocytes, which sense mechanical deformation of the mineralized bone. However, cells in the marrow are also mechanosensitive and may contribute to load-induced bone adaptation, as marrow is subjected to mechanical stress during bone deformation. We investigated the contribution of mechanotransduction in marrow cells to trabecular bone formation by applying low magnitude mechanical stimulation (LMMS) to porcine vertebral trabecular bone explants in an in situ bioreactor. The bone formation rate was higher in stimulated explants compared to unloaded controls which represent a disuse condition (CNT). However, sclerostin protein expression in osteocytes was not different between groups, nor was expression of osteocytic mechanoregulatory genes SOST, IGF-1, CTGF, and Cyr61, suggesting the mechanoregulatory program of osteocytes was unaffected by the loading regime. In contrast, c-Fos, a gene indicative of mechanical stimulation, was upregulated in the marrow cells of mechanically stimulated explants, while the level of activated c-Jun decreased by 25%. The activator protein 1 (AP-1) transcription factor is a heterodimer of c-Fos and c-Jun, which led us to investigate the expression of the downstream target gene cyclin-D1, a gene associated with cell cycle progression and osteogenesis. Cyclin-D1 gene expression in the stimulated marrow was approximately double that of the controls. The level of phosphorylated PYK2, a purported inhibitor of osteoblast differentiation, also decreased in marrow cells from stimulated explants. Taken together, mechanotransduction in marrow cells induced trabecular bone formation independent of osteocyte signaling. Identifying the specific cells and signaling pathways involved, and verifying them with inhibition of specific signaling molecules, could lead to potential therapeutic targets for diseases characterized by bone loss. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据