4.6 Article

Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain

期刊

PHYSICAL REVIEW B
卷 93, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.93.075404

关键词

-

资金

  1. National Natural Science Foundation of China [51306111]
  2. Shanghai Municipal Natural Science Foundation [13ZR1456000]
  3. Deutsche Forschungsgemeinschaft (DFG) [HU 2269/2-1]

向作者/读者索取更多资源

Strain engineering is one of the most promising and effective routes toward continuously tuning the electronic and optic properties of materials, while thermal properties are generally believed to be insensitive to mechanical strain. In this paper, the strain-dependent thermal conductivity of monolayer silicene under uniform biaxial tension is computed by solving the phonon Boltzmann transport equation with interatomic force constants extracted from first-principles calculations. Unlike the commonly believed understanding that thermal conductivity only slightly decreases with increased tensile strain for bulk materials, it is found that the thermal conductivity of silicene can increase dramatically with strain. Depending on the size, the maximum thermal conductivity of strained silicene can be a few times higher than that of the unstrained case. Such an unusual strain dependence is mainly attributed to the dramatic enhancement in the acoustic phonon lifetime. Such enhancement plausibly originates from the flattening of the buckling of the silicene structure upon stretching, which is unique for silicene as compared with other common two-dimensional materials. Our findings offer perspectives on modulating the thermal properties of low-dimensional structures for applications such as thermoelectrics, thermal circuits, and nanoelectronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据