4.6 Article Proceedings Paper

Identifying diseases-related metabolites using random walk

期刊

BMC BIOINFORMATICS
卷 19, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12859-018-2098-1

关键词

Metabolites; Similarity of diseases; Similarity of metabolites; Random walk; InfDisSim; MISIM

资金

  1. Fundamental Research Funds for the Central Universities [HIT NSRIF 201856]
  2. National Natural Science Foundation of China [61502125]
  3. Heilongjiang Postdoctoral Fund [LBH-Z6064, LBH-Z15179]
  4. China Postdoctoral Science Foundation [2016 M590291]

向作者/读者索取更多资源

Background: Metabolites disrupted by abnormal state of human body are deemed as the effect of diseases. In comparison with the cause of diseases like genes, these markers are easier to be captured for the prevention and diagnosis of metabolic diseases. Currently, a large number of metabolic markers of diseases need to be explored, which drive us to do this work. Methods: The existing metabolite-disease associations were extracted from Human Metabolome Database (HMDB) using a text mining tool NCBO annotator as priori knowledge. Next we calculated the similarity of a pair-wise metabolites based on the similarity of disease sets of them. Then, all the similarities of metabolite pairs were utilized for constructing a weighted metabolite association network (WMAN). Subsequently, the network was utilized for predicting novel metabolic markers of diseases using random walk. Results: Totally, 604 metabolites and 228 diseases were extracted from HMDB. From 604 metabolites, 453 metabolites are selected to construct the WMAN, where each metabolite is deemed as a node, and the similarity of two metabolites as the weight of the edge linking them. The performance of the network is validated using the leave one out method. As a result, the high area under the receiver operating characteristic curve (AUC) (0.7048) is achieved. The further case studies for identifying novel metabolites of diabetes mellitus were validated in the recent studies. Conclusion: In this paper, we presented a novel method for prioritizing metabolite-disease pairs. The superior performance validates its reliability for exploring novel metabolic markers of diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据