4.6 Article

Semi-supervised machine learning for automated species identification by collagen peptide mass fingerprinting

期刊

BMC BIOINFORMATICS
卷 19, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12859-018-2221-3

关键词

Collagen fingerprinting; Ancient bone identification; High-throughput species identification; Species biomarker identification; PCA; Hierarchical clustering

资金

  1. Royal Society [UF120473]
  2. NERC [NE/H015132/1]
  3. NERC [NE/H015132/1] Funding Source: UKRI

向作者/读者索取更多资源

Background: Biomolecular methods for species identification are increasingly being utilised in the study of changing environments, both at the microscopic and macroscopic levels. High-throughput peptide mass fingerprinting has been largely applied to bacterial identification, but increasingly used to identify archaeological and palaeontological skeletal material to yield information on past environments and human-animal interaction. However, as applications move away from predominantly domesticate and the more abundant wild fauna to a much wider range of less common taxa that do not yet have genetically-derived sequence information, robust methods of species identification and biomarker selection need to be determined. Results: Here we developed a supervised machine learning algorithm for classifying the species of ancient remains based on collagen fingerprinting. The aim was to minimise requirements on prior knowledge of known species while yielding satisfactory sensitivity and specificity. The algorithm uses iterations of a modified random forest classifier with a similarity scoring system to expand its identified samples. We tested it on a set of 6805 spectra and found that a high level of accuracy can be achieved with a training set of five identified specimens per taxon. Conclusions: This method consistently achieves higher accuracy than two-dimensional principal component analysis and similar accuracy with hierarchical clustering using optimised parameters, which greatly reduces requirements for human input. Within the vertebrata, we demonstrate that this method was able to achieve the taxonomic resolution of family or sub-family level whereas the genus- or species-level identification may require manual interpretation or further experiments. In addition, it also identifies additional species biomarkers than those previously published.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据