4.5 Article

Transcriptome Analysis of CHO Cell Size Increase During a Fed-Batch Process

期刊

BIOTECHNOLOGY JOURNAL
卷 14, 期 3, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/biot.201800156

关键词

cell cycle; cell size increase; CHO cell culture; mAb production; mTOR; transcriptome analysis

资金

  1. EFRO Province of Gelderland and Overijssel, the Netherlands

向作者/读者索取更多资源

In a Chinese Hamster Ovary (CHO) cell fed-batch process, arrest of cell proliferation and an almost threefold increase in cell size occurred, which is associated with an increase in cell-specific productivity. In this study, transcriptome analysis is performed to identify the molecular mechanisms associated with this. Cell cycle analysis reveals that the cells are arrested mainly in the G(0)/G(1) phase. The cell cycle arrest is associated with significant up-regulation of cyclin-dependent kinases inhibitors (CDKNs) and down-regulation of cyclin-dependent kinases (CDKs) and cyclins. During the cell size increase phase, the gene expression of the upstream pathways of mechanistic target of rapamycin (mTOR), which is related to the extracellular growth factor, cytokine, and amino acid conditions, shows a strongly synchronized pattern to promote the mTOR activity. The downstream genes of mTOR also show a synchronized pattern to stimulate protein translation and lipid synthesis. The results demonstrate that cell cycle inhibition and stimulated mTOR activity at the transcriptome level are related to CHO cell size increase. The cell size increase is related to the extracellular nutrient conditions through a number of cascade pathways, indicating that by rational design of media and feeds, CHO cell size can be manipulated during culture processes, which may further improve cell growth and specific productivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据