4.6 Article

Combination drug delivery via multilamellar vesicles enables targeting of tumor cells and tumor vasculature

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 115, 期 6, 页码 1403-1415

出版社

WILEY
DOI: 10.1002/bit.26566

关键词

active targeting nanoparticles; combretastatin A4 (CA-4); crosslinked multilamellar liposomal vesicle; doxorubicin (Dox); nanomedicine; targeted drug combination therapy

资金

  1. National Institutes of Health [F31CA200242, P01CA132681, R01AI068978, R01CA170820, R01EB017206]
  2. NATIONAL CANCER INSTITUTE [F31CA200242] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Blood vessel development is critical for the continued growth and progression of solid tumors and, therefore, makes an attractive target for improving cancer therapy. Indeed, vascular-targeted therapies have been extensively explored but they have shown minimal efficacy as monotherapies. Combretastatin A4 (CA-4) is a tubulin-binding vascular disrupting agent that selectively targets the established tumor endothelium, causing rapid vascular beak down. Despite its potent anticancer potential, the drug has dose-limiting side effects, particularly in the form of cardiovascular toxicity. Furthermore, its poor aqueous solubility and the resulting limited bioavailability hinder its antitumor activity in the clinic. To improve the therapeutic efficacy of CA-4, we investigated its application as a combination therapy with doxorubicin (Dox) in a tumor vasculature targeted delivery vehicle: peptide-modified cross-linked multilamellar liposomal vesicles (cMLVs). In vitro cell culture studies showed that a tumor vasculature-targeting peptide, RIF7, could facilitate higher cellular uptake of drug-loaded cMLVs, and consequently enhance the antitumor efficacy in both drug resistant B16 mouse melanoma and human MDA-MB-231 breast cancer cells. In vivo, upon intravenous injection, targeted cMLVs could efficiently deliver both Dox and CA-4 to significantly slow tumor growth through the specific interaction of the targeting peptide with its receptor on the surface of tumor vasculature. This study demonstrates the potential of our novel targeted combination therapy delivery vehicle to improve the outcome of cancer treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据