4.8 Article

Unmodified and multi-walled carbon nanotube modified tetrahedral amorphous carbon (ta-C) films as in vivo sensor materials for sensitive and selective detection of dopamine

期刊

BIOSENSORS & BIOELECTRONICS
卷 118, 期 -, 页码 23-30

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2018.07.018

关键词

Tetrahedral amorphous carbon; Multi-walled carbon nanotubes; Dopamine; Ascorbic acid; Cyclic voltammetry; Biocompatibility

资金

  1. Academy of Finland [274670, 285526]

向作者/读者索取更多资源

Unmodified and multi-walled carbon nanotube (MWCNT) modified tetrahedral amorphous carbon (ta-C) films of 15 and 50 nm were investigated as potential in vivo sensor materials for the detection of dopamine (DA) in the presence of the main interferents, ascorbic acid (AA) and uric acid (UA). The MWCNTs were grown directly on ta-C by chemical vapor deposition (designated as ta-C + CNT) and were characterized with X-ray photoelectron spectroscopy, Raman spectroscopy, scanning and transmission electron microscopy. Electroanalytical sensitivity and selectivity were determined with cyclic voltammetry. Biocompatibility of the materials was assessed with cell cultures of mouse neural stem cells (mNSCs). The detection limits of DA for both ta-C and ta-C + CNT electrodes ranged from 40 to 85 nM, which are well within the required range for in vivo detection. The detection limits were lower for both ta-C and ta-C + CNT electrodes with 50 nm of ta-C compared to 15 nm. The ta-C electrodes showed a large dynamic linear range of 0.01-100 mu M but could not resolve between the oxidation peaks of DA, AA and UA. Modification with MWCNTs, however, resulted in excellent selectivity and all three analytes could be detected simultaneously at physiologically relevant concentrations using cyclic voltammetry. Based on cell culture of mNSCs, both ta-C and ta-C + CNT exhibited good biocompatibility, demonstrating their potential as in vivo sensor materials for the detection of DA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据