4.6 Article

Crystal structure of IspF from Bacillus subtilis and absence of protein complex assembly amongst IspD/IspE/IspF enzymes in the MEP pathway

期刊

BIOSCIENCE REPORTS
卷 38, 期 -, 页码 -

出版社

PORTLAND PRESS LTD
DOI: 10.1042/BSR20171370

关键词

-

资金

  1. 100 Talents Program of the Chinese Academy of Sciences
  2. Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences [KLIM-201303]

向作者/读者索取更多资源

2-C-Methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF) is a key enzyme in the 2-C-Methyl-D-erythritol-4-phosphate (MEP) pathway of isoprenoid biosynthesis. This enzyme catalyzes the 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDPME2P) to 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MEcDP) with concomitant release of cytidine 5'-diphospate (CMP). Bacillus subtilis is a potential host cell for the production of isoprenoids, but few studies are performed on the key enzymes of MEP pathway in B. subtilis. In this work, the high-resolution crystal structures of IspF in native and complex with CMP from B. subtilis have been determined. Structural comparisons indicate that there is a looser packing of the subunits of IspF in B. subtilis, whereas the solvent accessible surface of its active pockets is smaller than that in Escherichia coli. Meanwhile, the protein-protein associations of 2-C-Methyl-D-erythritol-4-phosphatecytidyltransferase (IspD), CDPME kinase (IspE) and IspF from B. subtilis and E. coli, which catalyze three consecutive steps in the MEP pathway, are analyzed by native gel shift and size exclusion chromatography methods. The data here show that protein complex assembly is not detectable. These results will be useful for isoprenoid biosynthesis by metabolic engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据