4.8 Article

Salinity-induced cellular cross-talk in carbon partitioning reveals starch-to-lipid biosynthesis switching in low-starch freshwater algae

期刊

BIORESOURCE TECHNOLOGY
卷 250, 期 -, 页码 449-456

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2017.11.067

关键词

Low-starch algae; Freshwater algae; Salinity stress; Starch-to-lipid shift; Carbon partitioning

资金

  1. National Science Fund for Excellent Young Scholars [51322811]
  2. Science and Technology Development Planning of Shandong Province [2012GGE27027]
  3. Program for New Century Excellent Talents in University of Ministry of Education of China [NCET-12-0341]

向作者/读者索取更多资源

Salinity stress has been verified to be a successful approach to enhance lipid production in high-starch marine algae, and salinity-induced carbon flow switching has been proposed as an algal response specific to brackish water. With the aim of testing this assumption, Chlorella sorokiniana SDEC-18, a low-starch freshwater alga, was grown in BG11 medium with NaCl addition at various concentrations (0, 2, 5, 10, 20, and 30 g/L). The results showed that salinity stress promoted carbon redistribution and starch conversion to lipid. The most desirable lipid productivity of 19.66 mg/L.d occurred in the medium with 20 g/L NaCl, about 2.16 times as high as that in the BG11 medium control. Moreover, microalgae with salinity stress were able to produce biodiesel with a more suitable cloud point, due to a decrease in the saturated fatty acid content. This therefore confirms that low-starch freshwater microalgae can also carry out salinity-induced carbon flow switching.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据