4.5 Article

Experimental characterization of the hygroscopic properties of wood during convective drying using digital holographic interferometry

期刊

APPLIED OPTICS
卷 55, 期 5, 页码 960-968

出版社

OPTICAL SOC AMER
DOI: 10.1364/AO.55.000960

关键词

-

类别

资金

  1. Defence Research and Development Organisation (DRDO)
  2. Department of Science and Technology (DST)

向作者/读者索取更多资源

In this paper, an application of digital holography for the measurement of surface deformations and the strain field to understand the shrinkage behavior of wood during convective drying is presented. Moisture absorption and desorption induce the dimensional changes and deformations in wood that leads to failure of certain components made of wood. The knowledge of the dimensional changes in wood, deformations, strain distribution and their causes are important for the best utilization of wood. For the study, lensless Fourier transform digital holographic interferometry is used to measure moisture-induced deformation, strain distribution, and the coefficient of hygroscopic shrinkage in different samples of wood. The technique is highly sensitive and enables the observation of deformation and strain distribution during the variations of moisture content in the wood. The wet wood sample was exposed to convective drying, which leads to changes in the moisture content and the associated deformations. The deformation/strain in each step of drying process is used to evaluate the coefficient of hygroscopic shrinkage in different wood samples. The experiments were repeated for differently treated woods. The experimental results show that the strain and coefficient of hygroscopic shrinkage can be minimized if the wood is dried in the presence of the proper moisture content. (C) 2016 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据