4.5 Article

Essential Role of the ε Subunit for Reversible Chemo-Mechanical Coupling in F1-ATPase

期刊

BIOPHYSICAL JOURNAL
卷 114, 期 1, 页码 178-187

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2017.11.004

关键词

-

资金

  1. Japan Society for the Promotion of Science [JP15H05591]
  2. PRESTO grant from the Japan Science and Technology Agency [JPMJPR13LC]
  3. Nagase Science Technology Foundation
  4. Grants-in-Aid for Scientific Research [15K07013] Funding Source: KAKEN

向作者/读者索取更多资源

F-1-ATPase is a rotary motor protein driven by ATP hydrolysis. Among molecular motors, F-1 exhibits unique high reversibility in chemo-mechanical coupling, synthesizing ATP from ADP and inorganic phosphate upon forcible rotor reversal. The epsilon subunit enhances ATP synthesis coupling efficiency to > 70% upon rotation reversal. However, the detailed mechanism has remained elusive. In this study, we performed stall-and-release experiments to elucidate how the epsilon subunit modulates ATP association/dissociation and hydrolysis/synthesis process kinetics and thermodynamics, key reaction steps for efficient ATP synthesis. The epsilon subunit significantly accelerated the rates of ATP dissociation and synthesis by two-to fivefold, whereas those ofATP binding and hydrolysis were not enhanced. Numerical analysis based on the determined kinetic parameters quantitatively reproduced previous findings of two-to fivefold coupling efficiency improvement by the e subunit at the condition exhibiting the maximum ATP synthesis activity, a physiological role of F-1-ATPase. Furthermore, fundamentally similar results were obtained upon epsilon subunit C-terminal domain truncation, suggesting that the N-terminal domain is responsible for the rate enhancement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据