4.6 Article

Half-filled Landau level, topological insulator surfaces, and three-dimensional quantum spin liquids

期刊

PHYSICAL REVIEW B
卷 93, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.93.085110

关键词

-

资金

  1. NSF [DMR-1305741]
  2. Simons Foundation
  3. Direct For Mathematical & Physical Scien
  4. Division Of Materials Research [1305741] Funding Source: National Science Foundation

向作者/读者索取更多资源

We synthesize and partly review recent developments relating the physics of the half-filled Landau level in two dimensions to correlated surface states of topological insulators in three dimensions. The latter are in turn related to the physics of certain three-dimensional quantum spin liquid states. The resulting insights provide an interesting answer to the old question of how particle-hole symmetry is realized in composite fermion liquids. Specifically the metallic state at filling nu = 1/2-described originally in pioneering work by Halperin, Lee, and Read as a liquid of composite fermions-was proposed recently by Son to be described by a particle-hole symmetric effective field theory distinct from that in the prior literature. We show how the relation to topological insulator surface states leads to a physical understanding of the correctness of this proposal. We develop a simple picture of the particle-hole symmetric composite fermion through a modification of older pictures as electrically neutral dipolar particles. We revisit the phenomenology of composite fermi liquids (with or without particle-hole symmetry), and show that their heat/electrical transport dramatically violates the conventional Wiedemann-Franz law but satisfies a modified one. We also discuss the implications of these insights for finding physical realizations of correlated topological insulator surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据