4.7 Article

A RADIAL VELOCITY TEST FOR SUPERMASSIVE BLACK HOLE BINARIES AS AN EXPLANATION FOR BROAD, DOUBLE-PEAKED EMISSION LINES IN ACTIVE GALACTIC NUCLEI

期刊

ASTROPHYSICAL JOURNAL
卷 817, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.3847/0004-637X/817/1/42

关键词

galaxies: active; line: profiles

资金

  1. National Science Foundation [AST-1211756]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Astronomical Sciences [1211756] Funding Source: National Science Foundation

向作者/读者索取更多资源

One of the proposed explanations for the broad, double-peaked Balmer emission lines observed in the spectra of some active galactic nuclei (AGNs) is that they are associated with sub-parsec supermassive black hole (SMBH) binaries. Here, we test the binary broad-line region hypothesis through several decades of monitoring of the velocity structure of double-peaked Ha emission lines in 13 low-redshift, mostly radio-loud AGNs. This is a much larger set of objects compared to an earlier test by Eracleous et al. and we use much longer time series for the three objects studied in that paper. Although systematic changes in radial velocity can be traced in many of their lines, they are demonstrably not like those of a spectroscopic binary in a circular orbit. Any spectroscopic binary period must therefore be much longer than the span of the monitoring (assuming a circular orbit), which in turn would require black hole masses that exceed by 1-2 orders of magnitude the values obtained for these objects using techniques such as reverberation mapping and stellar velocity dispersion. Moreover, the response of the double-peaked Balmer line profiles to fluctuations of the ionizing continuum and the shape of the Ly alpha profiles are incompatible with an SMBH binary. The binary broad-line region hypothesis is therefore disfavored. Other processes evidently shape these line profiles and cause the long-term velocity variations of the double peaks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据