4.7 Article

FREQUENCY-DEPENDENT DISPERSION MEASURES AND IMPLICATIONS FOR PULSAR TIMING

期刊

ASTROPHYSICAL JOURNAL
卷 817, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.3847/0004-637X/817/1/16

关键词

gravitational waves; ISM: structure; pulsars: general; stars: neutron

资金

  1. NSF PIRE program [0968296]
  2. CSIRO
  3. NSF [1313120]
  4. Direct For Mathematical & Physical Scien
  5. Division Of Astronomical Sciences [1313120] Funding Source: National Science Foundation
  6. Direct For Mathematical & Physical Scien
  7. Division Of Physics [1430284] Funding Source: National Science Foundation

向作者/读者索取更多资源

The dispersion measure (DM), the column density of free electrons to a pulsar, is shown to be frequency dependent because of multipath scattering from small-scale electron-density fluctuations. DMs vary between propagation paths whose transverse extent varies strongly with frequency, yielding arrival times that deviate from the highfrequency scaling expected for a cold, uniform, unmagnetized plasma (1/frequency(2)). Scaling laws for thin phase screens are verified with simulations; extended media are also analyzed. The rms DM difference across an octave band near 1.5 GHz is similar to 4 x 10(-5) pc cm(-3) for pulsars at similar to 1 kpc distance. The corresponding arrival-time variations are a few to hundreds of nanoseconds for DM less than or similar to 30 pc cm(-3) but increase rapidly to microseconds or more for larger DMs and wider frequency ranges. Chromatic DMs introduce correlated noise into timing residuals with a power spectrum of low pass form. The correlation time is roughly the geometric mean of the refraction times for the highest and lowest radio frequencies used, ranging from days to years, depending on the pulsar. We discuss implications for methodologies that use large frequency separations or wide bandwidth receivers for timing measurements. Chromatic DMs are partially mitigable by including an additional chromatic term in arrival time models. Without mitigation, an additional term in the noise model for pulsar timing is implied. In combination with measurement errors from radiometer noise, an arbitrarily large increase in total frequency range (or bandwidth) will yield diminishing benefits and may be detrimental to overall timing precision.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据