4.7 Article

FGF21 and DPP-4 inhibitor equally prevents cognitive decline in obese rats

期刊

BIOMEDICINE & PHARMACOTHERAPY
卷 97, 期 -, 页码 1663-1672

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2017.12.021

关键词

Brain; Cognition; Brain mitochondria; Synaptic plasticity; Vildagliptin

资金

  1. Thailand Research Fund [TRF-RTA6080003, MRG5980198]
  2. Chiang Mai University [PHD/023/2556 PSNC]
  3. National Science and Technology Development Agency Thailand
  4. Chiang Mai University Center of Excellence Award

向作者/读者索取更多资源

The beneficial effects of Fibroblast Growth Factor 21 (FGF21) on metabolic function and neuroprotection have been shown in earlier research. We have previously shown that the Dipeptidyl Peptidase 4 inhibitor, vildagliptin, also led to improved insulin sensitivity and brain function in the obese-insulin resistant condition. However, the comparative efficacy on the improvement of metabolic function and neuroprotection between FGF21 and vildagliptin in the obese-insulin resistant condition has never been investigated. Twenty-four male Wistar rats were divided into two groups, and received either a normal diet (ND, n = 6) or a high fat diet (HFD, n = 18) for 16 weeks. At week 13, the HFD-fed rats were divided into three subgroups (n = 6/subgroup) to receive either a vehicle, recombinant human FGF21 (0.1 mg/kg/day) or vildagliptin (3 mg/kg/day), for four weeks. ND-fed rats were given a vehicle for four weeks. The metabolic parameters and brain function were subsequently investigated. The results demonstrated that the rats fed on HFD had obese-insulin resistance, increased systemic inflammation, brain mitochondrial dysfunction, increased brain apoptosis, impaired hippocampal plasticity, and demonstrated cognitive decline. FGF21 and vildagliptin effectively attenuated peripheral insulin resistance, brain mitochondrial dysfunction, brain apoptosis and cognitive decline. However, only FGF21 treatment led to significantly reduced body weight gain, visceral fat, systemic inflammation, improved hippocampal synaptic plasticity, enhanced FGF21 mediated signaling in the brain leading to prevention of early cognitive decline. These findings suggest that FGF21 exerts greater efficacy than vildagliptin in restoring metabolic function as well as brain function in cases of obese-insulin resistant rats.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据