4.7 Article

Zwitterionic Polyester-Based Nanoparticles with Tunable Size, Polymer Molecular Weight, and Degradation Time

期刊

BIOMACROMOLECULES
卷 19, 期 4, 页码 1314-1323

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.8b00127

关键词

-

向作者/读者索取更多资源

Biodegradable polymer nanoparticles are an important class of materials used in several applications for their unique characteristics. In particular, the ones stabilized by zwitterionic materials are gaining increased interest in medicine as alternative to the more common ones based on poly(ethylene glycol) thanks to their superior stability and ability to avoid both the accelerated blood clearance and allergic reactions. In this work, a novel class of zwitterionic based NPs has been produced, and a method to independently control the nanopartide size, degradation time, and polymer molecular weight has been developed and demonstrated. This has been possible by the synthesis and the fine-tuning of zwitterionic amphiphilic block copolymers obtained via the combination of ring-opening polymerization and reversible addition-fragmentation chain transfer polymerization. The final results showed that when two block copolymers contain the same number of caprolactone units, the one with longer oligoester lateral chains degrades faster. This phenomenon is in sharp contrast with the one seen so far for the common linear polyester systems where longer chains result in longer degradation times, and it can be used to better tailor the degradation behavior of the nanopartides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据