4.7 Article

Toward Semistructural Cellulose Nanocomposites: The Need for Scalable Processing and Interface Tailoring

期刊

BIOMACROMOLECULES
卷 19, 期 7, 页码 2341-2350

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.8b00142

关键词

-

资金

  1. Knut and Alice Wallenberg (KAW) foundation through the Wallenberg Wood Science Center (WWSC)
  2. SSF [GMT14-0036]
  3. Swedish Foundation for Strategic Research (SSF) [GMT14-0036] Funding Source: Swedish Foundation for Strategic Research (SSF)

向作者/读者索取更多资源

Cellulose nanocomposites can be considered for semistructural load-bearing applications where modulus and strength requirements exceed 10 GPa and 100 MPa, respectively. Such properties are higher than for most neat polymers but typical for molded short glass fiber composites. The research challenge for polymer matrix biocomposites is to develop processing concepts that allow high cellulose nanofibril (CNF) content, nanostructural control in the form of well-dispersed CNF, the use of suitable polymer matrices, as well as molecular scale interface tailoring to address moisture effects. From a practical point of view, the processing concept needs to be scalable so that large-scale industrial processing is feasible. The vast majority of cellulose nanocomposite studies elaborate on materials with low nanocellulose content. An important reason is the challenge to prevent CNF agglomeration at high CNF content. Research activities are therefore needed on concepts with the potential for rapid processing with controlled nanostructure, including well-dispersed fibrils at high CNF content so that favorable properties are obtained. This perspective discusses processing strategies, agglomeration problems, opportunities, and effects from interface tailoring. Specifically, preformed CNF mats can be used to design nanostructured biocomposites with high CNF content. Because very few composite materials combine functional and structural properties, CNF materials are an exception in this sense. The suggested processing concept could include functional components (inorganic clays, carbon nanotubes, magnetic nanoparticles, among others). In functional three-phase systems, CNF networks are combined with functional components (nanoparticles or fibril coatings) together with a ductile polymer matrix. Such materials can have functional properties (optical, magnetic, electric, etc.) in combination with mechanical performance, and the comparably low cost of nanocellulose may facilitate the use of large nanocomposite structures in industrial applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据