4.7 Article

Calcium/Calmodulin-Dependent Protein Kinase II and Eukaryotic Elongation Factor 2 Kinase Pathways Mediate the Antidepressant Action of Ketamine

期刊

BIOLOGICAL PSYCHIATRY
卷 84, 期 1, 页码 65-75

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.biopsych.2017.11.028

关键词

CaMKII; eEF2 kinase; GluA1; Ketamine; Protein synthesis; tatCN21

资金

  1. Israel Science Foundation [ISF 946/17, ISF-UGC 2311/15, ISF-Canada 2395/15]
  2. Israeli Planning and Budgeting Committee fellowship

向作者/读者索取更多资源

BACKGROUND: Ketamine is an N-methyl-D-aspartate receptor antagonist, which on administration produces fast-acting antidepressant responses in patients with major depressive disorder. Yet, the mechanism underlying the antidepressant action of ketamine remains unclear. METHODS: To unravel the mechanism of action of ketamine, we treated wild-type C57BL/6 mice with calcium/calmodulin-dependent protein kinase II (CaMKII) specific inhibitor tatCN21 peptide. We also used eukaryotic elongation factor 2 kinase (eEF2K) (also known as CaMKIII) knockout mice. We analyzed the effects biochemically and behaviorally, using the forced swim, tail suspension, and novelty suppressed feeding tests. RESULTS: Consistent with the literature, one of the major pathways mediating the antidepressant action of ketamine was reduction of phosphorylation of eEF2 via eEF2K. Specifically, knocking out eEF2K in mice eliminated phosphorylation of eEF2 at threonine at position 56, resulting in increased protein synthesis, and made mice resistant both biochemically and behaviorally to the antidepressant effects of ketamine. In addition, administration of ketamine led to differential regulation of CaMKII function, manifested as autoinhibition (pT305 phosphorylation) followed by autoactivation (pT286) of CaMKII alpha in the hippocampus and cortex. The inhibition phase of CaMKII, which lasted 10 to 20 minutes after administration of ketamine, occurred concurrently with eEF2K-dependent increased protein synthesis. Moreover, ketamine administration-dependent delayed induction of GluA1 (24 hours) was regulated by the activation of CaMKII. Importantly, systemic administration of the CaMKII inhibitor tatCN21 increased global protein synthesis and induced behavioral resistance to ketamine. CONCLUSIONS: Our data suggest that drugs that selectively target CaMKs and regulate protein synthesis offer novel strategies for treatment of major depressive disorder.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据