4.6 Article

N-Doped and Cu-doped TiO2-B nanowires with enhanced photoelectrochemical activity

期刊

RSC ADVANCES
卷 6, 期 20, 页码 16177-16182

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra26309c

关键词

-

资金

  1. Thousands talents program for pioneer researcher

向作者/读者索取更多资源

TiO2-B is a metastable phase of titania with an interesting crystal structure and electrochemical properties. N-Doped and Cu-doped TiO2-B nanowires (NWs) were synthesized by hydrothermal and microwave-assisted hydrothermal methods, respectively. All the NWs are single crystal with the same crystal orientation regardless of the synthesis method and doping situation. The doped NWs together with their corresponding pristine NWs were fabricated into a photoelectrochemical (PEC) anode for water oxidation and their photoactivity performances were studied and compared under different illumination wavelength ranges. The Cu-doped TiO2-B NWs exhibited a significantly higher photocurrent density than all the other samples under direct Xe lamp illumination; while their performance rapidly dropped below the hydrothermal NWs when the UV illumination was cut off. On the contrary, N-doped TiO2-B NWs exhibited significantly enhanced photoactivity particularly in the visible light range. X-ray photoelectron spectroscopy revealed that N-doping could narrow the electronic bandgap of TiO2, while the Cu-doping had little impact on the bandgap but rather improved the electrical conductivity. This research provides a new insight into elemental and phase control of TiO2-based solar energy harvesters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据