4.7 Article

Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks

期刊

BIOINFORMATICS
卷 34, 期 20, 页码 3427-3436

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/bty364

关键词

-

资金

  1. National Natural Science Foundation of China [61725302, 61671288, 91530321, 61603161, 61462018, 61762026]
  2. Science and Technology Commission of Shanghai Municipality [16JC1404300, 17JC1403500]

向作者/读者索取更多资源

Motivation: RNA-binding proteins (RBPs) take over 5-10% of the eukaryotic proteome and play key roles in many biological processes, e.g. gene regulation. Experimental detection of RBP binding sites is still time-intensive and high-costly. Instead, computational prediction of the RBP binding sites using patterns learned from existing annotation knowledge is a fast approach. From the biological point of view, the local structure context derived from local sequences will be recognized by specific RBPs. However, in computational modeling using deep learning, to our best knowledge, only global representations of entire RNA sequences are employed. So far, the local sequence information is ignored in the deep model construction process. Results: In this study, we present a computational method iDeepE to predict RNA-protein binding sites from RNA sequences by combining global and local convolutional neural networks (CNNs). For the global CNN, we pad the RNA sequences into the same length. For the local CNN, we split a RNA sequence into multiple overlapping fixed-length subsequences, where each subsequence is a signal channel of the whole sequence. Next, we train deep CNNs for multiple subsequences and the padded sequences to learn high-level features, respectively. Finally, the outputs from local and global CNNs are combined to improve the prediction. iDeepE demonstrates a better performance over state-of-the-art methods on two large-scale datasets derived from CLIP-seq. We also find that the local CNN runs 1.8 times faster than the global CNN with comparable performance when using GPUs. Our results show that iDeepE has captured experimentally verified binding mitifs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据