4.6 Article

Quantum algorithms and the finite element method

期刊

PHYSICAL REVIEW A
卷 93, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.93.032324

关键词

-

资金

  1. UK EPSRC [EP/L021005/1]
  2. EPSRC Centre for Doctoral Training in Quantum Engineering
  3. EPSRC [EP/L021005/1] Funding Source: UKRI
  4. Engineering and Physical Sciences Research Council [EP/L021005/1] Funding Source: researchfish

向作者/读者索取更多资源

The finite element method is used to approximately solve boundary value problems for differential equations. The method discretizes the parameter space and finds an approximate solution by solving a large system of linear equations. Here we investigate the extent to which the finite element method can be accelerated using an efficient quantum algorithm for solving linear equations. We consider the representative general question of approximately computing a linear functional of the solution to a boundary value problem and compare the quantum algorithm's theoretical performance with that of a standard classical algorithm-the conjugate gradient method. Prior work claimed that the quantum algorithm could be exponentially faster but did not determine the overall classical and quantum run times required to achieve a predetermined solution accuracy. Taking this into account, we find that the quantum algorithm can achieve a polynomial speedup, the extent of which grows with the dimension of the partial differential equation. In addition, we give evidence that no improvement of the quantum algorithm can lead to a superpolynomial speedup when the dimension is fixed and the solution satisfies certain smoothness properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据