4.2 Article

Reduction of the geomagnetic field delays Arabidopsis thaliana flowering time through downregulation of flowering-related genes

期刊

BIOELECTROMAGNETICS
卷 39, 期 5, 页码 361-374

出版社

WILEY
DOI: 10.1002/bem.22123

关键词

near-null magnetic field; geomagnetic field; Arabidopsis thaliana; leaves and floral meristem gene expression; delay in flowering time

资金

  1. Centro di Eccellenza CEBIOVEM
  2. Doctorate School of Pharmaceutical and Biomolecular Sciences of the University of Turin
  3. Wellcome Trust
  4. Royal Society [098436/Z/12/Z]

向作者/读者索取更多资源

Variations in magnetic field (MF) intensity are known to induce plant morphological and gene expression changes. In Arabidopsis thaliana Col-0, near-null magnetic field (NNMF, i.e., <100nT MF) causes a delay in the transition to flowering, but the expression of genes involved in this response has been poorly studied. Here, we showed a time-course quantitative analysis of the expression of both leaf (including clock genes, photoperiod pathway, GA20ox, SVP, and vernalization pathway) and floral meristem (including GA2ox, SOC1, AGL24, LFY, AP1, FD, and FLC) genes involved in the transition to flowering in A. thaliana under NNMF. NNMF induced a delayed flowering time and a significant reduction of leaf area index and flowering stem length, with respect to controls under geomagnetic field. Generation experiments (F-1- and F-2-NNMF) showed retention of flowering delay. The quantitative expression (qPCR) of some A. thaliana genes expressed in leaves and floral meristem was studied during transition to flowering. In leaves and flowering meristem, NNMF caused an early downregulation of clock, photoperiod, gibberellin, and vernalization pathways and a later downregulation of TSF, AP1, and FLC. In the floral meristem, the downregulation of AP1, AGL24, FT, and FLC in early phases of floral development was accompanied by a downregulation of the gibberellin pathway. The progressive upregulation of AGL24 and AP1 was also correlated to the delayed flowering by NNMF. The flowering delay is associated with the strong downregulation of FT, FLC, and GA20ox in the floral meristem and FT, TSF, FLC, and GA20ox in leaves. Bioelectromagnetics. 39:361-374, 2018. (c) 2018 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据