4.4 Article

Efficient Energy Harvesting Using Piezoelectric Compliant Mechanisms: Theory and Experiment

出版社

ASME
DOI: 10.1115/1.4032178

关键词

-

资金

  1. National Science Foundation ASSIST Nanosystems ERC [EEC-1160483]

向作者/读者索取更多资源

Piezoelectric energy harvesters typically perform poorly in the low frequency, low amplitude, and intermittent excitation environment of human movement. In this paper, a piezoelectric compliant mechanism (PCM) energy harvester is designed that consists of a polyvinylidene diflouoride (PVDF) unimorph clamped at the base and attached to a compliant mechanism at the tip. The compliant mechanism has two flexures that amplify the tip displacement to produce large motion of a proof mass and a low frequency first mode with an efficient (nearly quadratic) shape. The compliant mechanism is fabricated as a separate, relatively rigid frame with flexure hinges, simplifying the fabrication process, and surrounding and protecting the piezoelectric unimorph. The bridge structure of the PCM also self-limits the response to large amplitude impacts, improving the device robustness. Experiments show that the compliant hinge stiffness can be carefully tuned to approach the theoretical high power output and mode shape efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据