4.7 Article

Drug resistance induces the upregulation of H2S-producing enzymes in HCT116 colon cancer cells

期刊

BIOCHEMICAL PHARMACOLOGY
卷 149, 期 -, 页码 174-185

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2017.10.007

关键词

Cancer; Chemotherapy; Hydrogen sulfide; Bioenergetics; Proliferation

资金

  1. National Institutes of Health [R21TR001734, R01GMCA175803]

向作者/读者索取更多资源

Hydrogen sulfide (H2S) production in colon cancer cells supports cellular bioenergetics and proliferation. The aim of the present study was to investigate the alterations in H2S homeostasis during the development of resistance to 5-fluorouracil (5-FU), a commonly used chemotherapeutic agent. A 5-FU resistant HCT116 human colon cancer cell line was established by serial passage in the presence of increasing 5-FU concentrations. The 5-FU-resistant cells also demonstrated a partial resistance to an unrelated chemotherapeutic agent, oxaliplatin. Compared to parental cells, the 5-FU-resistant cells rely more on oxidative phosphorylation than glycolysis for bioenergetic function. There was a significant increase in the expression of the drug-metabolizing cytochrome P450 enzymes CYP1A2 and CYP2A6 in 5-FU-resistant cells. The CYP450 inhibitor phenylpyrrole enhanced 5-FU-induced cytotoxicity in 5-FU-resistant cells. Two major H2S-generating enzymes, cystathionine-B-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST) were upregulated in the 5-FU-resistant cells. 5-FU resistant cells exhibited decreased sensitivity to the CBS inhibitor aminooxyacetate (AOAA) in terms of suppression of cell viability, inhibition of cell proliferation and inhibition of oxidative phosphorylation. However, 5FU-resistant cells remained sensitive to the antiproliferative effect of benserazide (a recently identified, potentially repurposable CBS inhibitor). Taken together, the current data suggest that 5-FU resistance in HCT116 cells is associated with the upregulation of drug-metabolizing enzymes and an enhancement of endogenous H2S production. The anticancer effect of prototypical H2S biosynthesis inhibitor AOAA is impaired in 5-FU-resistant cells, but benserazide remains efficacious. Pharmacological approaches aimed at restoring the sensitivity of 5-FU-resistant cells to chemotherapeutic agents may be useful in the formulation of novel therapeutic strategies against colorectal cancer. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据