4.7 Article

Human GIP(3-30)NH2 inhibits G protein-dependent as well as G protein-independent signaling and is selective for the GIP receptor with high-affinity binding to primate but not rodent GIP receptors

期刊

BIOCHEMICAL PHARMACOLOGY
卷 150, 期 -, 页码 97-107

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2018.01.040

关键词

Glucose-dependent insulinotropic polypeptide (GIP); GIP receptor; Antagonist; Human subcutaneous adipocytes; Signaling

资金

  1. Novo Nordisk Foundation
  2. Independent Research Fund Denmark Medical Sciences
  3. Carlsberg Foundation
  4. Japan Science and Technology, PRESTO [JPMJPR1331]
  5. Japan Society for the Promotion of Science, KAKENHI [17K08264]
  6. Japan Agency for Medical Research and Development

向作者/读者索取更多资源

GIP(3-30)NH2 is a high affinity antagonist of the GIP receptor (GIPR) in humans inhibiting insulin secretion via G protein-dependent pathways. However, its ability to inhibit G protein-independent signaling is unknown. Here we determine its action on arrestin-recruitment and receptor internalization in recombinant cells. As GIP is adipogenic, we evaluate the inhibitory actions of GIP(3-30)NH2 in human adipocytes. Finally, we determine the receptor selectivity of GIP(3-30)NH2 among other human and animal GPCRs. cAMP accumulation and beta-arrestin 1 and 2 recruitment were studied in transiently transfected HEK293 cells and real-time internalization in transiently transfected HEK293A and in HEK293A beta-arrestin 1 and 2 knockout cells. Furthermore, human subcutaneous adipocytes were assessed for cAMP accumulation following ligand stimulation. Competition binding was examined in transiently transfected COS-7 cells using human I-125-GIP (3-30)NH2. The selectivity of human GIP(3-30)NH2 was examined by testing for agonistic and antagonistic properties on 62 human GPCRs. Human GIP(3-30)NH2 inhibited GIP(1-42)-induced cAMP and beta-arrestin 1 and 2 recruitment on the human GIPR and Schild plot analysis showed competitive antagonism with a pA(2) and Hill slope of 16.8 nM and 1.11 +/- 0.02 in cAMP, 10.6 nM and 1.15 +/- 0.05 in beta-arrestin 1 recruitment, and 10.2 nM and 1.06 +/- 0.05 in beta-arrestin 2 recruitment. Efficient internalization of the GIPR was dependent on the presence of either beta-arrestin 1 or 2. Moreover, GIP(3-30)NH2 inhibited GIP(1-42)-induced internalization in a concentration-dependent manner and notably also inhibited GIP-mediated signaling in human subcutaneous adipocytes. Finally, the antagonist was established as GIPR selective among 62 human GPCRs being species-specific with high affinity binding to the human and non-human primate (Macaca fascicularis) GIPR5, and low affinity binding to the rat and mouse GIPRs (K-d values of 2.0, 2.5, 31.6 and 100 nM, respectively). In conclusion, human GIP(3-30)NH2 is a selective and species-specific GIPR antagonist with broad inhibition of signaling and internalization in transfected cells as well as in human adipocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据